
Introductory note

This guide to the game Luì (www.oiler.education/lui) corresponds to Chapter 5 of
the work below.

Bernardi, L. (2024). Logic education: Playing with true and false (Doctoral dissertation).
Aix-Marseille Université & Università Roma Tre.

In addition to exploring the game rules, the guide also provides a broader theoretical
framework, briefly touching on the topic of dialogical logic and offering some didactic
observations.

Before going through this guide, we suggest learning to play the online games Zermelo
Game (available for free here: en.oiler.education/zermelo) and Bul Game (available
for free here: en.oiler.education/bul).

www.oiler.education/lui
en.oiler.education/zermelo
en.oiler.education/bul

5. Real-World Playability and
Online Software Implementation

5.1. A Brief Epistemological Framework for
Krivine’s Normal Form and the Game

In Chapter 1, to represent formulas, we introduced Krivine’s normal form

∀x⃗ F1, . . . ,Fn → A

to be read as "for every x, if all the hypotesis F1(⃗x), . . . , Fn (⃗x) hold, then the conclu-
sion A(⃗x) also holds". As shown in Chapter 1, the minimal language L =⊥,→,∀ is
sufficient to describe all first-order logic up to provability in classical logic. Moreover,
any formula written in the minimal language L can be expressed in Krivine’s normal
form.

In the next section, we aim to explore whether this normal form—that is, this way
of expressing formulas—and the TUV A game in general have a meaning that goes
beyond their technical usage.

5.1.1. The Statements
In mathematics, we aim to establish general facts, which can help us predict (from
latin praedicĕre, to say beforehand), that is, to know in advance certain behaviors,
effects, situations. Knowing that a single object in a set satisfies a certain property
is sometimes useful in some contexts, but knowing that all objects in a set satisfy a
property holds greater value, because it allows us to make predictions about objects of
that kind before practical verification. Although, in the following discussion, we will
limit ourselves exclusively to mathematical examples, the reader can seek examples in
all branches of scientific knowledge.

Let us start by considering an extremely simple statement: "each element has a
square root". In other words, using logical formalism, ∀x ∃y (y × y = x). This state-
ment is true in some environments (like complex numbers) and false in others (like
integer or real numbers).

More generally, it can be discovered that—among the objects of a set—only some
particular objects satisfy a certain property. In other words, one might find that a
certain property is true only for those objects in a set that have specific characteris-
tics. For example, in the context of real numbers, it is not true that every number is

82

5. Real-World Playability and Online Software Implementation – 5.1. A Brief
Epistemological Framework for Krivine’s Normal Form and the Game

smaller than its square. But if we limit ourselves to numbers greater than 1, then it
becomes true. In logical formalism, even though it’s false that ∀x(x < x2), it is true
that ∀x(x > 1 → x < x2). As often happens, we note that the hypothesis is a sufficient
condition but not a necessary one.

Generally speaking, it’s quite intuitive to state a scientific law in the following man-
ner: ∀x(H1(x)∧H2(x)∧ . . .∧Hn(x) →C (x)). Put simply, if an object x from a specific
set satisfies all the conditions H1, ..., Hn , then it also satisfies the conclusion C . To
streamline the notation, we’ll replace the conjunction symbol ∧ with a comma, leading
to the form ∀x(H1(x), . . . , Hn(x) →C (x)).

5.1.2. Debating on a Statement
It’s now interesting to see how a statement can undergo critical analysis. For the sake
of simplicity, let us imagine a conversation between two individuals with opposing
views on the validity of the statement: a dialogical analysis of a statement clearly
occurs in any research context, even within a single individual’s thought process. How
does one argue that a particular statement of the form ∀x(H1(x), . . . , Hn(x) →C (x)) is
false?

Let us envision a brief conversation between two individuals about a very simple
statement.

P: “Did you know that all polygons have at least one obtuse angle?”
O: “That’s not true! Look, this triangle has all acute angles.”
P: “You’re right, but if the polygon has at least 5 sides, then it’s true!”
In this conversation, the critical analysis of the statement led to the introduction of

a new hypothesis H about the polygon to make the statement true.
It’s worth noting that the two interlocutors seem to have a mutual understanding of

what constitutes a polygon—for instance, excluding intertwined polygons—and of
the definition of an obtuse angle. For any statement to be subjected to analysis, there
must be a shared foundational knowledge between the interlocutors. This includes
a common language, a set of shared true statements—denoted as

‚

(which could
potentially be empty)—and a set of shared false statements, henceforth referred to as
‚. Although ‚ can also be empty, it’s safe to assume that both players agree on the
fact that false is indeed false, i.e., ⊥∈‚. Moving forward, it’s important to underline
that stating A →⊥ is equivalent to stating ¬A, meaning claiming that A is false.

Generalizing from the previous example, if one wishes to argue that a statement
∀x(H1(x), . . . , Hn(x) →C (x)) is false, they need to present a counterexample. Specifi-
cally, they must identify a particular object a for which H1(a), ..., Hn(a) all hold true,
and yet, C (a) is false. In more formal terms, one must find a witness for the following
formula: ∃x(H1(x)∧ . . .∧Hn(x)∧¬C (x)).

Let’s delve into another example, a slightly more intricate conversation, which will
pave the way for generalizing our earlier analysis.

P: “Did you know that all functions defined over a bounded interval have a local
maximum?”

83

5. Real-World Playability and Online Software Implementation – 5.1. A Brief
Epistemological Framework for Krivine’s Normal Form and the Game

O: “No, that’s not correct! The function f (x) = 1
x doesn’t have a maximum in the

interval (0,1).”
P: “Actually, f (x) = 1

x isn’t defined on (0,1).”
O: “Yes, it is. At which point do you think it’s undefined?”
P: “At 0!”
O: “Look, 0 isn’t part of the interval (0,1).”
P: “Right...”
The same conversation, expressed in logical formalism, goes as follows:
P: “∀ f ∀I (H1(f , I), H2(I) →C (f , I))”
Where H1 stands for the condition that f is defined over I , H2 indicates that the

interval is bounded, and C means that f has a local maximum within the interval I .
O: “(∀ f ∀I (H1(f , I), H2(I) →C (f , I))) →⊥. In fact, H1(1

x , (0,1))∧H2((0,1))∧¬C (1
x , (0,1))”

P: “H1(1
x , (0,1)) →⊥. Indeed 1

0 is not defined.”
O: “0 ∉ (0,1)”

P reflects and returns to O with a statement refined with a new hypothesis.
P: “Did you know that all functions defined over a closed and bounded interval have

a local maximum?”
O: “That’s still not right! Consider the parabola f (x) = 1− x2 and, at its vertex,

redefine the function to be 0.”
P: “The parabola you’re describing isn’t defined over a closed interval!”
O: “Yes, it is. Just define it over the interval [−1,1].”
P: “You’re right...”
The revised statement introduced by P is ∀ f ∀I (H1(f , I), H2(I), H3(I) → C (f , I)),

where H3 represents the property of the interval being closed.

P reflects further and returns to O with an even more refined statement.
P: “Did you know that all continuous functions defined over a closed and bounded

interval have a local maximum?”
The statement is ∀ f ∀I (H1(f , I), H2(I), H3(I), H4(f , I) →C (f , I)) where H4 express

the propriety of a function being continuous on a domain.
We now observe that, in the preceding example, the hypotheses H may have a lay-

ered nature. Generally speaking, the hypotheses H can mirror the form of a statement
seen earlier: H = ∀y(G1(y)∧ . . .∧Gm(y) → G0(y)). By adopting this approach, we
can expand upon the dialogue rules previously discussed: once O asserts that, with
a certain witness t , H1(t)∧ . . .∧ Hn(t) holds true, P can counter by claiming that a
specific Hi (t) = ∀y(G1(y)∧ . . .∧Gm(y) → G0(y) is actually false. That is to say, for a
particular u, while G1(u) . . .Gn(u) all hold true, G0(u) turns out to be false, thereby
continuing the discussion.

In our presented case, the conclusion C also has a layered nature. However, as pre-
sented in Chapter 1, one can always rewrite the formula to ensure that C is of a simpler
nature, in a sense directly verifiable, shifting all the complexity to the hypotheses.

This kind of dynamic discussion seems to aptly simulate the process of scientific
discovery. One might initially conjecture ∀xC (x). However, upon observation and

84

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

contemplation, it’s revealed that not all x satisfy the property C , but only those for
which the hypotheses H1, ... Hn hold, leading to the formulation of a theorem. It
is interesting to note that the word "theorem" originates from the Greek theorema,
meaning ’contemplation’, which in turn derives from theoréo, ’I see’, ’I observe’.

In concluding this section, we emphasize that the scientific process and progress
have three foundational characteristics: firstly, creating new hypotheses to be tested
out; secondly, testing a hypothesis by challenging oneself, others, or reality through
experiments; and lastly, developing theories to categorize and interpret the knowledge.
Not only does the game TUV A provide an environment to test one’s hypotheses,
but the set T captures the idea of adding new facts to shared knowledge, as already
discussed at the beginning of chapter 2.

5.2. Online Implementation: the λuì Software
In this section, we present an educational transposition of the game TUV A , exploring
its practical usability in a learning context. As we will see at the end of the chapter, the
software could also be valuable as a proof-search program.

In presenting the software, we consider mathematical environments that on one
hand are relevant in educational practice, and on the other hold distinct logical value,
even from a historical perspective. Besides "pure" contexts of propositional logic and
first-order logic, the online implementation allows playing also in the environments
of natural numbers, mathematical analysis, and Euclidean geometry. Specifically,
PA (Peano Arithmetic) is of fundamental importance in logic for various reasons
including the incompleteness theorems, and for obvious reasons in education. In this
regard, we note that PA, with the successor function, reflects the intuitive idea of a
numerical system that is built up gradually by adding ever larger numbers. Moreover,
it is notably the first area where students encounter nested quantifiers and serves as
an environment for studying constructivism. Euclidean geometry (where it is still part
of the curriculum!) serves as a fundamental setting for learning the logical structure
of statements, with particular emphasis on implication. Historically, it has epitomized
logical rigor within mathematics, to such an extent that, in 1821, A. L. Cauchy began his
Cours d’Analyse de l’École Royale Polytechnique by stating his intention to endow the
methods of analysis with “all the rigor that is demanded in geometry”. Furthermore,
in any logic course that discuss axioms, Euclid’s axioms are invariably explored.

In other words, this chapter aims to serve as a bridge between the first four chapters,
which are exclusively logical in their nature, and the last four, which are predominantly
related to Mathematics Education.

Let us now delve into the online implementation of the TUV A game, called λui.
The game was developed with the essential contributions of Mattia Sanchioni (for
managing the code logic and generally the backend) and Luca di Pietro Martinelli (for
managing the website where the code is run and generally the frontend, handling UI
and UX).

The game features two players challenging each other regarding the truth of F , a

85

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.1.: Homepage of λui.

formula written in Krivine’s normal form. The Proponent, abbreviated as P, believes
F to be true, while the Opponent, abbreviated as O, believes it to be false. The game
follows dialogue rules that formalize the insights given in the previous section.

The software is split into a backend, accessible at www.galua.cc, which manages
the game’s logic and data storage, and a frontend available at www.oiler.education/
lui, where the game is intended to be played, which exclusively handles the visualiza-
tion of the game’s dynamics1. The name “Luì” is inspired by the French pronunciation
of Jean-Louis Krivine, the designer of UV A game (Krivine and Legrandgérard 2007).

At www.oiler.education/lui, users can find and freely access the software. Here,
they have the choice of playing in either propositional logic or first-order logic (Figure
5.1). Within the domain of first-order logic, there are four available theories to select
from: pure logic (where no specificy theory T is involved), Giuseppe Peano (PA arith-
metic), Auoquamel (analysis), and Alfred Tarski (Euclidian geometry). As we will later
discuss, adjustments have been made on these theories to ensure their playability.

Once users have picked their desired theory, they proceed to select a formula of that
theory and start the game by clicking on ’START’. As can be seen from Figure 5.1, a
’User vs PC’ mode is also planned for the future. For now, the game is played between
two real players (Proponent and Opponent) who play on the same device.

During the game, the three sets U , V , and A are referred to as O⊤, P⊤, and ‚
respectively, for easier comprehension on their status. Indeed, O⊤ represents what is
true for the Opponent, P⊤ what is true for the Proponent, while ‚ represents what is
false for both players. When a theory is present, it is denoted by

‚

, underlining its
symmetric and opposite relationship with ‚.

In fact, there is a strong duality between the sets

‚

and ‚: the former contains

1The frontend and backend communicate via REST API: the frontend initiates a call to an endpoint on
www.galua.cc, passing all required parameters, and the server responds with the requested data.

86

www.galua.cc
www.oiler.education/lui
www.oiler.education/lui
www.oiler.education/lui
www.galua.cc

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.2.: In Propositional Logic, users have a choice among 13 distinct formulas.

formulas that are true for both players, and the latter contains formulas that are false
for both players. The union of these two sets constitutes what can be referred to as
common knowledge. However, as we will see in more detail when presenting the rules
of the game, this shared knowledge has a peculiarity, and the dualism between

‚
and

‚ becomes even more evident: the formulas in the set
‚

can only be invoked by P
(we might say removed from

‚
, barring contractions), while O is the only one who

can add formulas to ‚. The

‚

remains constant during the game, whereas the ‚ is
not. Indeed, this asymmetry makes sense: the Opponent, in their attempt to deny
the formula F , has no interest in making concessions of truths. Symmetrically, the
Proponent has no interest in conceding false formulas.

To facilitate reading, if during the game the user hover the cursor over a formula
without clicking it, the hypotheses of a formula are marked in orange, while the
conclusion is in dark blue. The top-level quantifiers ∀ and the main implication → are
in black. As an example, a formula is written as ∀x(F1(x), . . . ,Fn(x) → A(x)).

For every game modality (i.e., every theory), we will provide the specific rules of that
modality, evidently adapted from the general rules outlined in Chapter 1.

5.2.1. Propositional Logic
The game is played between P and O on a propositional formula F ; in Propositional
Logic, users have a choice among 13 distinct formulas (Figure 5.2). The formulas aim
to provide a progressive and meaningful approach to propositional logic.

The game initializes with O⊤ = {F →⊥} (i.e., O believes F to be false), P⊤ = {F } (i.e.,
P believes F to be true), and ‚= {⊥} (i.e., both players concede that ⊥ is false). The
game starts with O playing first, and the turns alternate thereafter.

• O plays by choosing a formula F ∈ P⊤. They add all the premises F1, . . . ,Fn of F

87

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.3.: The Opponent’s opening move, where they pick ((B → R) → B) → B .

to O⊤ and the conclusion F0 to ‚. In particular, if P⊤ is empty then O cannot
move.

• P plays by choosing a formula F ∈ O⊤ such that the conclusion F0 is in ‚. They
replace the set P⊤ with {F1,. . . ,Fn}.

If the play is finite, which is equivalent to say that O can no longer make a move, then P
is the winner; otherwise, O wins. Clearly, since O wins if and only if the play is infinite,
the message "Opponent wins" does not exist.

As an example, let us analyze a match on Pierce’s formula ((B → R) → B) → B .
The game begins with the Opponent’s move (see 5.3), where they select the only

formula they can from the set P⊤, namely ((B → R) → B) → B . They assert that B is
false, placing it into ‚, and that ((B → R) → B) is true, moving it to O⊤.

The Proponent now has two options (see 5.4): either restart the game by choosing
(((B → R) → B) → B) → ⊥ (which is the negation of Pierce’s formula), or selecting
((B → R) → B). The move is valid because B ∈‚. Clearly, continuously restarting the
game in the long run isn’t a favorable strategy, so P opts for ((B → R) → B).

The Opponent, still following a predetermined path, proceeds by adding R ∈‚ and
B ∈ O ‚(see 5.5).

The Proponent wins since B belongs to both O⊤ and ‚ (see 5.6 and 5.7).

5.2.2. First Order Logic: Pure Logic
The game is played between P and O on a first-order formula F . In Pure Logic users
have a choice among 13 distinct formulas, as shown in Figure 5.8. Similarly to Propo-
sitional Logic environment, the formulas strive to follow a progressive development
of skills: starting from very simple formulas, moving through the Drinker Paradox

88

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.4.: Proponent’s first move.

(formula number 7), to binary predicates2. The game initializes with O⊤ = {F →⊥},
P⊤ = {F }, and ‚= {⊥}. The game begins with O playing first, and the turns alternate.

• O plays by choosing a formula F ∈ P⊤ and closed terms b⃗ to be substituted to
variables x⃗ of the top-level quantifiers of F . They add F (⃗b)1, . . . ,F (⃗b)n to O⊤ and
F (⃗b)0 to ‚. In particular, if P⊤ is empty then O cannot move.

• P plays by choosing a formula F ∈ O⊤ and closed terms b⃗ such that F (⃗b)0 ∈‚.
They replace the set P⊤ with {F (⃗b)1,. . . ,F (⃗b)n}.

We note that a closed term—in the Pure Logic mode—is simply a letter (e.g., a, b,
...); at each turn, the player can choose whether to play a letter that has been played
previously in the game or a new letter, referred to as a fresh constant3. If the play
is finite, which is to say that O can no longer make a move, then P is the winner;
otherwise, O wins. Clearly, in this instance as well, since O wins if and only if the play
is infinite, the message "Opponent wins" does not exists.

Let us see a play on the formula number 5, which is ∀x((∀y(G(y) →⊥) →⊥) →G(x)).
On the right, we can see the set of moves: each move is presented as (F ,⃗b) where F is
the picked formula and b⃗ are the picked closed terms.

The first to move is O. They select the only formula in P⊤ and choose the closed
terms to replace x. Since no closed term has been played yet, the only move they can
make is to play a fresh constant, namely the first letter a.

2For completeness, we inform the reader that the formula ∀x(∀y(A(x, y) → ⊥), (∀z(∀w A(w, z) →
⊥) → ⊥) → ⊥) corresponds to ∃y∀x A(x, y) → ∀x∃y A(x, y) while the formula ∀x(∀y A(y, x) →
⊥),∀z(∀w(A(z, w)⊥) →⊥) →⊥) correspond to ∀x∃y A(x, y) →∃y∀x A(x, y). Clearly, the first one is
false and the second is true.

3In other words, during their move, the two players can choose the witness from among those played
up to that point, or a new one.

89

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.5.: Opponent’s move.

The conclusion G(a) is subsequently added to ‚, and the only premise is added to
O⊤. It’s now to P to play. They have the choice of either playing F →⊥ (restarting the
game) or playing the formula, just added by O⊤, ∀y(G(y) →⊥) →⊥: they’re allowed
to make this move since ⊥∈‚.

O is now obligated to select the only formula present in P⊤. However, they do have
the choice to replace y with either a previously played closed term (namely a) or
introduce a new one. This decision is crucial.

If O makes the unfortunate choice of playing a, then P will win in the subsequent
turn. On the other hand, by choosing a new letter (and doing so every time the
opportunity arises), the Opponent manages to perpetually continue the game, thus
winning. It’s worth noting here—as extensively discussed earlier—that the formula is
false because a winning strategy exists for the Opponent. However, if the Opponent
makes erroneous choices, they can still lose.

5.2.3. Giuseppe Peano
5.2.3.1. PA Theory

Peano’s theory is an axiomatic system that aims to describe the set of natural numbers
with elementary operations. It was introduced by the Italian mathematician Giuseppe
Peano in 1889. The updated first-order theory is today referred to as Peano Arithmetic,
or more simply PA. The language used in PA includes symbols for functions 0,s,+, and
× where s denotes the function that assigns the successor to every natural number.
The only relation symbol is =. The axioms, in addition to the three standard ones for
equality4, are as follows:

4Hereafter, we will refer to these axioms as EQ1 (reflexivity), EQ2 (symmetry), and EQ3 (transitivity).

90

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.6.: Proponent wins by picking B from O⊤.

• (PA1) ∀x¬(s(x) = 0)

• (PA2) ∀x∀y(s(x) = s(y) → x = y)

• (PA3) ∀x(x +0 = x)

• (PA4) ∀x∀y(x + s(y) = s(x + y))

• (PA5) ∀x(x ×0 = 0)

• (PA6) ∀x∀y(x × s(y) = (x × y)+x)

• (PA7) the axiom schema for the Induction Principle

5.2.3.2. On the theory used in the game

First of all, let us notice that the theory we just introduced has closed terms: conse-
quently, it would be possible to effectively play it in a TUV A game. However, doing
so would be exceedingly cumbersome and tedious, even for a logic enthusiast. If we
hope to achieve a truly playable game, one requirement we cannot avoid is that the
two players should be able to directly input, via keyboard, natural numbers as closed
terms. This requirement makes the function s superfluous, as it can be emulated
by the unary function x +15. The need to enter natural numbers brings with it the
introduction of another axiom schema: for each n, we have n +1 = n +1, where n is a
constant symbol, and n is the interpretation of the constant in the model. However, if
a player were to justify the status of the number n based on these axioms every time n
it’s played, the game would still be overwhelmingly tedious.

5Consequently, the axioms PA1 and PA2 are rewritten using the function +.

91

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.7.: Victory screen for P.

In the same fashion, justifying every single operation based on the axioms of addi-
tion and multiplication would be exceedingly long. For this reason, we decided to let
the program handle every operation and the status of the natural numbers by itself.
Specifically, every time a closed term appears in the game, it is replaced with the cor-
responding natural number. In other words, by doing so, the program autonomously
manages the axioms PA3, PA4, PA5, PA6, which can thus be dropped from

‚

.
We have also added, as symbols for predicates, the usual predicates in elementary

arithmetic practice: <, >, EVEN, ODD, DIVIDE, PRIME. Every predicate P thus added,
which we will call a derived predicate, is inserted into the theory

‚

with the axiom

P (x) ⇐⇒ FP (x)

where FP (x) is a formula written in the language without P . We note that clearly PRIME
depends on DIVIDE: before being able to define PRIME as a derived predicate, it is
advisable to enrich the language with the symbol for the DIVIDE predicate. Since the
connective ⇐⇒ is not part of the language, for each predicate P , formulas P1 and P2

have been added to the axioms

‚

, one for each side of the implication.
The symbol for the DIVIDE predicate is expressed as ◁ even though standard math-

ematical practice uses the symbol |. This was done because the symbol ◁ captures
much more effectively than | the fact that the binary predicate DIVIDE induces an
order relation over N. We believe that the order relation thus induced is an order
relation that is worth delving into at an educational level, for two distinct reasons:
firstly, unlike the classic <, it is a non total order relation and, additionally, it admits
both a minimum, which is 1, and a maximum, which is 0. This is of interest in the
definition of the least common multiple: in elementary definitions, "least" refers to
the < order; it is therefore necessary to exclude 0 in the definition, limiting oneself to

92

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.8.: In Pure Logic (FOL), users have a choice among 13 distinct formulas.

positive numbers.

5.2.3.3. The Game

In the GIUSEPPE PEANO game mode, the user chooses which formula to play from 26
options and whether to play in SHORTCUT or STANDARD MODE (see Figure 5.13), a
distinction that will be elaborated upon later.

The 26 formulas aim to capture some important aspects of number theory. The first
three formulas, one true and two false, are used exclusively to familiarize players with
the dynamics of the game. Subsequently, simple yet fundamental situations involving
even and odd numbers—often overlooked in traditional teaching—are addressed.
Following this, Fermat’s Last Theorem is proposed, limited to the cases n = 2 (i.e., the
search for Pythagorean triples) and n = 3, where the search for triples can be intriguing
and stimulating, although fruitless as demonstrated by L. Euler.

Formula 126 is connected to the search for fractions that approximate the square
root of 2. Indeed, the term 1

x2 becomes increasingly irrelevant as x and y grow. The
possible approximation has been known since ancient times (Maracchia 2005), and
the numbers xs that satisfy the relation are called lateral numbers, while the ys are
diagonal numbers. It should be noted that to find all lateral and diagonal numbers,
one should also study the formula ∀x, y(2×x2 = y2 +1 →⊥).

Formulas 13, 14, and 15 allow for an in-depth exploration of divisibility and, more
generally, proofs in PA. For example, with formula 13, although P can always win easily,
it’s not immediately obvious why this is the case. From 16 to 20, the focus is exclusively
on the definition of the PRIME predicate, a foundational concept in number theory.
From 21 to 26, typical number theory formulas involving primality are proposed. It

6∀x, y(2×x2 +1 = y2 →⊥)

93

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.9.: Initial position: O plays the only available formula in P⊤.

was decided to conclude with the Goldbach Conjecture7, as easy to understand as it
is difficult to prove. In fact, the conjecture as stated is false: we did not specify the
condition that the even number must be greater than 2. It will be interesting to see if
the Opponent can win by exploiting this gap.

As already mentioned, when players choose to play in GIUSEPPE PEANO mode,
they can decide whether to play in STANDARD MODE or SHORTCUT MODE.

STANDARD MODE
The game is played between P and O using a first-order formula F written in PA.

The game is initialized as usual.

• O plays by choosing a formula F ∈ P⊤ and natural numbers n⃗ to be substituted
to variables x⃗ of the top-level quantifiers of F . They add F (n⃗)1, . . . ,F (n⃗)n to O⊤
and F (n⃗)0 to ‚. In particular, if P⊤ is empty then O cannot move.

• P plays by choosing a formula F ∈ O⊤ and natural numbers n⃗ such that F (n⃗)0 ∈‚.
They replace the set P⊤ with {F (⃗b)1,. . . ,F (⃗b)n}.

This mode, despite its theoretical interest, is still too complex for practical play, at
least initially. Therefore, in addition to all the modifications already implemented to
facilitate the game, an additional rule is added in SHORTCUT mode to further simplify
it.

SHORTCUT MODE
In the SHORTCUT mode, axioms PA1, PA2, EQ1, EQ2, and EQ3 are removed from

the theory

‚

. However, a new rule for P is introduced: every time a true equality
appears in ‚, the Proponent has the right to click on it, winning the match. Similarly,

7Which, in fact, is attributed to L. Euler!

94

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.10.: O selects the only available formula and replace x with a fresh constant.

whenever a formula of the kind ∀x⃗ (F1, . . . ,Fn → t1(⃗x) = t2(⃗x)) appears in O⊤, the
Proponent can always play it, provided that—after the substitution of variables with
closed terms—t1 = t2 is false. This approach is virtually the same to including all true
equalities into

‚
and all the false ones into ‚. This concept also echoed in Krivine’s

work (Krivine 2006). In other words, P and O leave the burden and honor of evaluating
equalities to the computer.

More generally, considering potential future developments, the SHORTCUT rule
can be implemented in reference to any predicate P , leaving it to the computer to
evaluate the predicate. This is done by virtually inserting all P (⃗(n)) for which P is
false into ‚, and all P (⃗(n)) for which P is true into

‚

. In a sense, once one becomes
accustomed to handling a certain predicate, a method for evaluating its truthfulness
is also shared, without having to justify it each time up to basic definitions. Similarly,
once the winning strategy for P on a formula F is found, this can be inserted into T,
emulating the evolution of shared knowledge between P and O

Let us consider an example, in SHORTCUT mode, of a game on the formula PRIME(221).
The game is initialized with P asserting that 221 is prime, and O asserting that it is not
prime, as shown in Figure 5.14.

In the first move of the game, Player O places PRIME(221) in ‚, see Figure 5.15.
At this point, P recalls the definition of a prime number, stating that if O claims

that it is not true that 221 is prime, O must provide a number that divides 221 that is
different from both 1 and 221 (Figure 5.16).

Now, O could lose if they provided a wrong witness, such as a number that does not
divide 221. However, since 221 is not prime, there are correct witnesses, such as 13. At
this point, Player O claims that 13 divides 221, but that 13 is neither equal to 1 nor to
221 (see Figure 5.17).

The game could continue with P recalling the definition of the DIVIDE predicate, to

95

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.11.: P plays ∀y(G(y) →⊥) →⊥.

invite O to find a number k such that 13×k = 221. Clearly, here too, O is able to identify
the correct witness k. In the end, P can do nothing but repeat the same moves, and the
game will result in an infinite loop. In other words, O will never fall into contradiction.

We conclude the section with a lemma that ensures the two game modes presented
are equivalent.

Lemma 23. The SHORTCUT MODE and the STANDARD MODE are equivalent up to
winning strategy for P.

Proof. The SHORTCUT MODE introduces two simplifications: first, whenever a true
equality appears in ‚, P can point it out and win the game; second, to play a formula
F =∀x⃗ (F1, . . . ,Fn → t1(⃗x) = t2(⃗x)) contained in O⊤, it is sufficient that, after the instan-
tiation of the variables x⃗, t1 = t2 turns out to be false, regardless of whether it belongs
to ‚ or not.

Regarding the first simplification, since sums and products are managed by the
computer in both modes, it is enough to note that any true equality is of the type
n = n for some natural number n. Therefore, if the equality n = n appears in ‚, the
game is easily won in both modes: in the SHORTCUT MODE, it suffices to click on the
equality in question, while in the STANDARD MODE, it is sufficient to play the axiom
EQ1 =∀x(x = x), choosing the constant n.

Regarding the second simplification, we need to show that—in the STANDARD
MODE—it is always possible for P to make O admit a false equality. To do this, note
that, since sums and products are managed by the computer, a false equality is always
of the type n = m with n and m natural numbers different from each other. Further-
more, thanks to the axiom EQ2 (symmetry of equality), we can always assume n < m.
Thus, to make a false equality of one’s choice appear in ‚, it is sufficient to first play

96

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.12.: O decides on the closed term.

the axiom PA1 with k = m−n and then repeatedly play the axiom PA2 until the desired
equality is obtained.

As can be noted, throughout the proof, the axiom EQ3 (not present in the SHORT-
CUT MODE) was not useful in proving the equivalence of the two modes. Indeed, EQ3
is not useful even in the STANDARD MODE and could be safely removed from

‚
like

the axioms PA3, PA4, PA5, and PA6.

5.2.3.4. Differences with the Formal Game: On the Induction Principle and
True Formulas in N

The version of PA we’ve defined doesn’t precisely mirror the theoretical game for two
distinct reasons: firstly, it’s not true that infinitely many constants are fresh for

‚

; and
secondly the Induction Principle is not included in the theory

‚

.
Concerning the first discrepancy, players can only use numbers in the game, each

described by the theory. This means that winning strategies in λuì may not correspond
to proofs in PA. When discussing a game on formula F , there is a possibility that while
having for each possible play a winning strategy, one might not have a unique winning
strategy for every possible play.

However, we can agree that the condition "for each possible play there is a winning
strategy" is a necessary condition for "there exists a winning strategy for every possible
play". Once a student has for every play a winning strategy, they can be encouraged
to generalize the reasoning, explaining why they are sure to win, no matter which
numbers O will play. Specifically, by using variables in the Opponent’s moves instead
of constants.

Relating to the second reason why λuì doesn’t perfectly mirror the theoretical game,
it’s worth noting that the Induction Principle (IP) is not included in

‚

. This does not

97

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.13.: Users set up their game within the GIUSEPPE PEANO mode.

change the potential of having a winning strategy since IP is valid in N. What changes
is that the Induction Principle provides the ability to generalize reasoning. Without it,
winning strategies might not correspond to derivations. IP can indeed be presented
from this perspective, namely as a tool for generalizing reasoning. We plan to add the
possibility to play with the IP soon.

5.2.4. Auoquamel
5.2.4.1. Real Numbers

There are various axiomatizations for real numbers, and we find it interesting to
mention two qualitatively different approaches here. In 1936, Tarski proposed an
elegant second-order axiomatization, which allows for the discussion of completeness
(i.e., every non-empty set that is bounded above has a least upper bound), but is
clearly unsuitable for our purposes due to its second-order nature. It’s worth noting
that, in any case, any course in mathematical analysis implicitly considers a second-
order structure. On the other hand—as far as first-order is concerned—the theory of
real closed fields is usually considered. This theory has as models all those that are
elementarily equivalent to the real numbers using the standard language (i.e., those
models that satisfy all and only the first-order formulas satisfied by the real numbers).

More specifically, a real closed field F is a totally ordered field where every positive
element of F has a square root in F , and any polynomial of odd degree with coefficients
in F has at least one root in F . This theory was proven to be decidable by A. Tarski.

An example of a model of this theory is the set of algebraic numbers, which could
theoretically be utilized in the TUV A game. In this game, playing a constant means
selecting a specific polynomial and specifying (with the order relation) which root

98

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.14.: The user sets their game within the GIUSEPPE PEANO mode.

to consider. However, despite being theoretically feasible, this approach would be
impractical and artificial in a real-world setting. Additionally, it would be unsatisfac-
tory as it would not allow for the play of commonly used constants like π or e. From a
theoretical perspective, the real closed field of computable reals is more intriguing.

Computable numbers are real numbers that can be computed to any desired pre-
cision using a finite, terminating algorithm. Emile Borel introduced the concept of
a computable real number in 1912, based on the intuitive notion of computability
available at the time.

A real number a is considered computable if it can be approximated by a com-
putable function

f : N→Z

in the following way: for any given positive integer n, the function produces an integer
f (n) such that:

f (n)−1

n
≤ a ≤ f (n)+1

n
.

The fact that computable real numbers form a field was first proved by Henry
Gordon Rice in 1954 (Rice 1954).

Therefore, playing a constant in this model would mean selecting the index of the
computable function. However, despite this scenario being theoretically feasible, an
actual game is impossible.

5.2.4.2. On the theory used in the game

In the online game, only limited decimals are used, meaning those with finitely many
digits after the decimal point in base 10. More specifically, decimals with a fixed maxi-
mum length are used. The relations in our language are >, <, and =. As for functions,

99

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.15.: The game is played on the formula PRIME(221).

we consider all the commonly used functions in analysis: +, − (binary), − (unary),
/, ×, pow , log, sin, cos, tan,

p
x, 3

p
x, absolute value, π, e, and φ. Clearly, there are

formulas that are true in R but false when restricted to our model. Furthermore, the
relations of >, <, and = turn out to be decidable in our model, whereas they are only
semidecidable in computable reals8. However, this does not impose a pedagogical
limitation on our game, because the formulas from which players can choose are
almost always formulas with the same truth value in both models. And when this
is not the case, interesting educational insights can be drawn from the discrepancy.
Furthermore, we believe that the set of limited decimal numbers is sufficient at an
educational level to provide the students with the necessary intuitions for understand-
ing real numbers. The model of limited decimal numbers captures the underlying
dynamics and conveys that every real number can be approximated with reasonable
accuracy by a limited decimal, an accuracy that clearly increases with the number of
significant digits available.

We emphasize that the functions on closed terms are automatically calculated
by the computer9, and so is the truth value of closed relations: in other words, the
SHORTCUT mode is always active for every predicate. Consequently, since there are
no other predicates defined from the basic predicates, T turns out to be empty, and
therefore not present during the game.

To conclude this section, we highlight a fact of crucial importance: unlike what

8In computable reals, if two numbers are different, the computation will eventually identify this
difference. However, in general, it cannot determine if two reals are equal. Conversely, if > and <
are satisfied, the computation will eventually realize it, but if they are not, it might never become
aware of this.

9Reconstructing the logical steps necessary to justify, for example, the sum of real numbers every time
would be excessively demanding and not in line with the goals of the game.

100

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.16.: O must provide a number y that satisfies the formula
∀y(y ◁221, (y = 1 →⊥) → y = 221).

happens in PA, the domain of many functions is not the entire set of R. The most
straightforward solution is that, as soon as the computer gives a domain error, the
last player who made a move is asked to change the numbers they have chosen.
Unfortunately, this is not a valid solution: consider, for example, log (x × y) and
suppose that at some point in the game a player chose x = 0. The player subsequently
called to choose y cannot select any value due to the previous choice of x. In other
words, although not responsible for the domain error, the second player bears its
consequences.

The solution we have found is twofold: on one hand, in every playable formula, the
domain is always precisely specified (by including the domain conditions as hypothe-
ses in the formula). On the other hand, when the computer returns a domain error,
the function is simply not computed, but the game continues with the unprocessed
expression: the player responsible for the domain error will lose because the number
they chose does not meet the pre-established domain conditions.

5.2.4.3. The Game

In the AUOQUAMEL game mode, users choose which formula to play from 21 available
options. The rules of the game are identical to those of the others modalities, with
the only exception being that the closed terms players can play are indeed limited
decimals. The chosen formulas allow for a gradual approach to the concept of limits,
with the number of quantifiers and connectives progressively increasing. The first six
formulas pertain to the concept of bounded and unbounded functions. Clearly, some
are true while others are not. It’s interesting to note that a function f is upper-bounded
if ∃x∀y(f (y) < x), while it is unbounded above if it satisfies ∀x∃y(f (y) > x), which

101

5. Real-World Playability and Online Software Implementation – 5.2. Online
Implementation: the Luì Software

Figure 5.17.: O claims that 13 divides 221 even though 13 = 1 and 13 = 221 are both
false.

is the negation of the previous definition; logically, the difference manifests in the
swapping of quantifiers. The next six formulas, on the other hand, refer to functions
that are bounded and unbounded within an interval. Logically, this involves adding
an implication compared to the previous formulas, in the hypotheses of which the
interval is specified. The last 9 formulas concern limits, which require, on a logical
level, the addition of a third quantifier.

Let’s now show an example of a play on formula number 3, namely ∃x∀y(sin(y) < x).
In other words, the formula asserts that the sine function is bounded. The formula,
written in normal form, is (∀x(∀y(sin(y) < x) →⊥)) →⊥.

O begins by claiming that the sine function is actually unbounded: ∀x(∀y(sin(y) < x) →⊥)
(Figure 5.18).

P claims that the sine function is indeed bounded, stating that O will not be able to
find a y for which sin(y) will be greater than 3 (Figure 5.19).

O is thus called upon to find a value y for which sin(y) ≥ 3. As shown in Figure 5.20,
O chooses the number 0.

P wins by pointing out that 0 < 3 is, in fact, true (see Figure 5.21 and Figure 5.22).
Let’s remember that the only mode available for AUOQUAMEL is indeed the shortcut
mode.

102

5. Real-World Playability and Online Software Implementation – 5.3. Further
Developments

Figure 5.18.: O selects the only available formula in P⊤.

5.3. Further Developments

5.3.1. Alfred Tarski
The reader may have noticed that we have not dealt with Euclidean geometry, as the
software has not yet been implemented in this direction. We limit ourselves here
to providing an intuition on how the game will be structured. Tarski’s theory is a
first-order formal theory for Euclidean geometry. The formalization, rather elegant,
involves variables referring only to points, no function symbols (in particular, no
constants) in the language, and the use of only two predicates besides equality: the
ternary predicate betweenness β(x, y, z), indicating that point y is aligned and lies
between x and z, and the quaternary predicate distance δ(x, y, z, w), indicating that
the distance between points x and y is equal to the distance between points z and w .

As can be immediately understood, the absence of closed terms makes the theory
unsuitable for an immediate transposition into the game. However, the work of M.
Beeson (2015) proves extremely useful, providing tools to make Tarski’s theory con-
structive. An idea, evolving from Beeson’s work, is that players can introduce constants
to play with (i.e., ordered pairs of decimal numbers) in a Cartesian environment, in the
style of dynamic geometry software, with typical constructions that in these softwares
are allowed.

5.3.2. AI and λuì
In our discussion, we have outlined several adjustments to enhance the game’s suit-
ability for human interaction. However, a computer engaged in strategy research is not
subject to the boredom that we aimed to reduce with these modifications. Referring,

103

5. Real-World Playability and Online Software Implementation – 5.3. Further
Developments

Figure 5.19.: P chooses the constant 3 to replace the variable x.

for example, to PA, the game can be implemented by requiring O to make exclusively
generic moves, as described in 3, and by inserting all the axioms into

‚

, including
the schema of the induction principle. At that point, a winning strategy for P would
correspond to an actual proof, and we could view λuì as a proof-search program. In
this direction, the possibility for users to create their own theories and formulas will
be added.

104

5. Real-World Playability and Online Software Implementation – 5.3. Further
Developments

Figure 5.20.: O chooses the constant 0 to replace the variable y .

Figure 5.21.: P clicks on 0 < 3 ∈‚.

105

5. Real-World Playability and Online Software Implementation – 5.3. Further
Developments

Figure 5.22.: P wins.

106

	Real-World Playability and Online Software Implementation
	A Brief Epistemological Framework for Krivine's Normal Form and the Game
	The Statements
	Debating on a Statement

	Online Implementation: the Luì Software
	Propositional Logic
	First Order Logic: Pure Logic
	Giuseppe Peano
	Auoquamel

	Further Developments
	Alfred Tarski
	AI and Luì

